ECE 312 Electronic Circuits (A)

Lec. 12: General Frequency Considerations

Instructor

Dr. Maher Abdelrasoul http://www.bu.edu.eg/staff/mahersalem3

Agenda

Introduction

Introduction

- The analysis thus far has been limited to a particular frequency.
- We will now investigate the frequency effects introduced by the larger capacitive elements of the network at low frequencies and the smaller capacitive elements of the active device at high frequencies.
- Because the analysis will extend through a wide frequency range, the logarithmic scale will be defined and used throughout the analysis.
- In addition, because industry typically uses a decibel scale on its frequency plots, the concept of the decibel is introduced.

Logarithms and Decibels

Logarithms

• We use it to cover a wide range.

$$a = b^x$$
, $x = \log_b a$

the logarithm of a number taken to a power is simply the power of the number if the number matches the base of the logarithm

log ₁₀ 10 ⁰	= 0
log ₁₀ 10	= 1
log ₁₀ 100	= 2
log10 1,000	= 3
log10 10,000	= 4
log ₁₀ 100,000	= 5
log10 1,000,000	= 6
log10 10,000,000	= 7
log10 100,000,000	= 8
etc.	

Common logarithm:	$x = \log_{10} a$
Natural logarithm:	$y = \log_e a$

$$\log_e a = 2.3 \log_{10} a$$

$$\log_{10} 1 = 0$$

$$\log_{10}\frac{a}{b} = \log_{10}a - \log_{10}b$$

$$\log_{10}\frac{1}{b} = -\log_{10}b$$

$$\log_{10} ab = \log_{10} a + \log_{10} b$$

Semi-log graph paper

Decibels

Power Levels

$$G = \log_{10} \frac{P_2}{P_1} \qquad \text{bel}$$

$$G_{\rm dB} = 10 \log_{10} \frac{P_2}{P_1} \qquad \rm dB$$

$$G_{\rm dBm} = 10 \log_{10} \frac{P_2}{1 \text{ mW}} \bigg|_{600 \Omega} \quad \rm dBm$$

$$G_{\rm dB} = 10 \log_{10} \frac{P_2}{P_1} = 10 \log_{10} \frac{V_2^2 / R_i}{V_1^2 / R_i} = 10 \log_{10} \left(\frac{V_2}{V_1}\right)^2$$
$$G_{\rm dB} = 20 \log_{10} \frac{V_2}{V_1} \quad \text{dB}$$

• Human Auditory Response !

Cascaded Stages

$$|A_{\nu_T}| = |A_{\nu_1}| \cdot |A_{\nu_2}| \cdot |A_{\nu_3}| \cdots |A_{\nu_n}|$$
$$G_{dB_T} = G_{dB_1} + G_{dB_2} + G_{dB_3} + \cdots + G_{dB_n} \quad dB$$

Voltage Gains versus dB Levels

Comparing
$$A_v = \frac{V_o}{V_i}$$
 to dB

Voltage Gain, V _o /V _i	dB Level
0.5	-6
0.707	-3
1	0
2	6
10	20
40	32
100	40
1000	60
10,000	80
etc.	

Example

EXAMPLE 9.8 An amplifier rated at 40-W output is connected to a 10- Ω speaker.

- a. Calculate the input power required for full power output if the power gain is 25 dB.
- b. Calculate the input voltage for rated output if the amplifier voltage gain is 40 dB.

Solution:

a. Eq. (9.11):
$$25 = 10 \log_{10} \frac{40 \text{ W}}{P_i} \Rightarrow P_i = \frac{40 \text{ W}}{\text{antilog } (2.5)} = \frac{40 \text{ W}}{3.16 \times 10^2}$$

 $= \frac{40 \text{ W}}{316} \cong 126.5 \text{ mW}$
b. $G_v = 20 \log_{10} \frac{V_o}{V_i} \Rightarrow 40 = 20 \log_{10} \frac{V_o}{V_i}$
 $\frac{V_o}{V_i} = \text{antilog } 2 = 100$
 $V_o = \sqrt{PR} = \sqrt{(40 \text{ W})(10 \text{ V})} = 20 \text{ V}$
 $V_i = \frac{V_o}{100} = \frac{20 \text{ V}}{100} = 0.2 \text{ V} = 200 \text{ mV}$

General Frequency Considerations

W	w, High & Mid Frequency Range						
	Variation in $X_C = \frac{1}{2\pi f_C}$ with frequency for a 1- μF capacitor		Variation in $X_C = \frac{1}{2\pi fC}$ with frequency for a 5 pF capacitor				
	f	X_C			f	X_C	
	10 Hz 100 Hz 1 kHz 10 kHz 100 kHz 1 MHz 10 MHz 100 MHz	15.91 kΩ 1.59 kΩ 159 Ω 15.9 Ω 1.59 Ω 0.159 Ω 15.9 mΩ 1.59 mΩ	Range of possible effect Range of lesser concern (≅ short-circuit equivalence)		10 Hz 100 Hz 1 kHz 10 kHz 100 kHz 1 MHz 10 MHz 100 MHz	3,183 MΩ 318.3 MΩ 31.83 MΩ 3.183 MΩ 318.3 kΩ 31.83 kΩ 3.183 kΩ 3.183 kΩ 3.183 Ω	<pre>Range of lesser concern (≅ open-circuit equivalent) Range of possible effect</pre>

- The larger capacitors of a system will have an important impact on the response of a system in the low-frequency range and can be ignored for the high-frequency region.
- The smaller capacitors of a system will have an important impact on the response of a system in the high-frequency range and can be ignored for the low-frequency region.
- The effect of the capacitive elements in an amplifier are ignored for the mid-frequency range when important quantities such as the gain and impedance levels are determined.

Typical Frequency Response

The band frequencies define a level where the gain or quantity of interest will be 70.7% of its maximum value.

Gain versus frequency: (a) RC-coupled amplifiers; (b) transformer-coupled amplifiers; (c) direct-coupled amplifiers.

Normalization Process

• Normalized plot

٠

 A_v

 $A_{v_{\rm mid}}|_{\rm dB}$

FIG. 9.12 Decibel plot of the normalized gain versus frequency plot of Fig. 9.9.